Identificación Por Radiofrecuencia
RFID (siglas de Radio Frequency IDentification, en español identificación por radiofrecuencia) es un sistema de almacenamiento y recuperación de datos remoto que usa dispositivos denominados etiquetas, tarjetas, transpondedores o tags RFID. El propósito fundamental de la tecnología RFID es transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio. Las tecnologías RFID se agrupan dentro de las denominadas Auto ID (automatic identification, o identificación automática).
Las etiquetas RFID son unos dispositivos pequeños, similares a una pegatina, que pueden ser adheridas o incorporadas a un producto, un animal o una persona. Contienen antenas para permitirles recibir y responder a peticiones por radiofrecuencia desde un emisor-receptor RFID. Las etiquetas pasivas no necesitan alimentación eléctrica interna, mientras que las activas sí lo requieren. Una de las ventajas del uso de radiofrecuencia (en lugar, por ejemplo, de infrarrojos) es que no se requiere visión directa entre emisor y receptor.
En la actualidad, la tecnología más extendida para la identificación de objetos es la de los códigos de barras. Sin embargo, éstos presentan algunas desventajas, como la escasa cantidad de datos que pueden almacenar y la imposibilidad de ser reprogramados. La mejora ideada constituyó el origen de la tecnología RFID; consistía en usar chips de silicio que pudieran transferir los datos que almacenaban al lector sin contacto físico, de forma equivalente a los lectores de infrarrojos utilizados para leer los códigos de barras.
Se ha sugerido que el primer dispositivo conocido similar a RFID pudo haber sido una herramienta de espionaje inventada por Léon Theremin para el gobierno soviético en 1945. El dispositivo de Theremin era un dispositivo de escucha secreto pasivo, no una etiqueta de identificación, por lo que esta aplicación es dudosa. Según algunas fuentes,2 la tecnología usada en RFID habría existido desde comienzos de los años 1920, desarrollada por el MIT y usada extensivamente por los británicos en la Segunda Guerra Mundial (fuente que establece que lossistemas RFID han existido desde finales de los años 1960 y que sólo recientemente se había popularizado gracias a las reducciones de costos).
Una tecnología similar, el transpondedor de IFF, fue inventada por los británicos en 1939, y fue utilizada de forma rutinaria por los aliados en la Segunda Guerra Mundial para identificar los aeroplanos como amigos o enemigos. Se trata probablemente de la tecnología citada por la fuente anterior.
Otro trabajo temprano que trata el RFID es el artículo de 1948 de Harry Stockman, titulado "Comunicación por medio de la energía reflejada" (Actas del IRE, pp. 1196-1204, octubre de 1948). Stockman predijo que "... el trabajo considerable de investigación y de desarrollo tiene que ser realizado antes de que los problemas básicos restantes en la comunicación de la energía reflejada se solucionen, y antes de que el campo de aplicaciones útiles se explore." Hicieron falta treinta años de avances en multitud de campos diversos antes de que RFID se convirtiera en una realidad
ARQUITECTURA
imagen de etiqueta RFID
El modo de funcionamiento de los sistemas RFID es simple. La etiqueta RFID, que contiene los datos de identificación del objeto al que se encuentra adherido, genera una señal de radiofrecuencia con dichos datos. Esta señal puede ser captada por un lector RFID, el cual se encarga de leer la información y pasarla en formato digital a la aplicación específica que utiliza RFID.
Un sistema RFID consta de los siguientes tres componentes:
Etiqueta RFID o transpondedor: compuesta por una antena, un transductor radio y un material encapsulado o chip. El propósito de la antena es permitirle al chip, el cual contiene la información, transmitir la información de identificación de la etiqueta. Existen varios tipos de etiquetas. El chip posee una memoria interna con una capacidad que depende del modelo y varía de una decena a millares de bytes. Existen varios tipos de memoria:- Solo lectura: el código de identificación que contiene es único y es personalizado durante la fabricación de la etiqueta.
- De lectura y escritura: la información de identificación puede ser modificada por el lector.
- Anticolisión. Se trata de etiquetas especiales que permiten que un lector identifique varias al mismo tiempo (habitualmente las etiquetas deben entrar una a una en la zona de cobertura del lector).
- Lector de RFID o transceptor: compuesto por una antena, un transceptor y un decodificador. El lector envía periódicamente señales para ver si hay alguna etiqueta en sus inmediaciones. Cuando capta una señal de una etiqueta (la cual contiene la información de identificación de esta), extrae la información y se la pasa al subsistema de procesamiento de datos.
- Subsistema de procesamiento de datos o Middleware RFID: proporciona los medios de proceso y almacenamiento de datos.
TIPOS
Las tags RFID pueden ser activos, semipasivos (también conocidos como semiactivos o asistidos por batería) o pasivos. Los tags pasivos no requieren ninguna fuente de alimentación interna y son dispositivos puramente pasivos (sólo se activan cuando un lector se encuentra cerca para suministrarles la energía necesaria). Los otros dos tipos necesitan alimentación, típicamente una pila pequeña.
La gran mayoría de las etiquetas RFID son pasivas, que son mucho más baratas de fabricar y no necesitan batería. En 2004, estas etiquetas tenían un precio desde 0,40$, en grandes pedidos, para etiquetas inteligentes, según el formato, y de 0,95$ para tags rigidos usados frecuentemente en el sector textil encapsulados en PPs o epoxi. El marcado de RFID universal de productos individuales será comercialmente viable con volúmenes muy grandes de 10.000 millones de unidades al año, llevando el coste de producción a menos de 0,05$ según un fabricante. La demanda actual de chips de circuitos integrados con RFID no está cerca de soportar ese coste. Los analistas de las compañías independientes de investigación como Gartner and Forrester Research convienen en que un nivel de precio de menos de 0,10$ (con un volumen de producción de 1.000 millones de unidades) sólo se puede lograr en unos 6 u 8 años, lo que limita los planes a corto plazo para una adopción extensa de las etiquetas RFID pasivas. Otros analistas creen que esos precios serían alcanzables dentro de 10-15 años.
A pesar de las ventajas en cuanto al coste de las etiquetas RFID pasivas con respecto a las activas son significativas, otros factores; incluyendo exactitud, funcionamiento en ciertos ambientes como cerca del agua o metal, y confiabilidad; hacen que el uso de etiquetas activas sea muy común hoy en día.
chip RFID pasivo
Tags pasivos Para comunicarse, los tags responden a peticiones o preguntas generando señales que a su vez no deben interferir con las transmisiones del lector, ya que las señales que llegan de los tags pueden ser muy débiles y han de poder distinguirse. Además de la reflexión o backscatter, puede manipularse el campo magnético del lector por medio de técnicas de modulación de carga. El backscatter se usa típicamente en el campo lejano y la modulación de carga en el campo próximo (a distancias de unas pocas veces la longitud de onda del lector).
Los tags pasivos no poseen alimentación eléctrica. La señal que les llega de los lectores induce una corriente eléctrica pequeña y suficiente para operar el circuito integrado CMOS del tag, de forma que puede generar y transmitir una respuesta. La mayoría de tags pasivos utiliza backscatter sobre la portadora recibida; esto es, la antena ha de estar diseñada para obtener la energía necesaria para funcionar a la vez que para transmitir la respuesta por backscatter. Esta respuesta puede ser cualquier tipo de información, no sólo un código identificador. Un tag puede incluir memoria no volátil, posiblemente escribible (por ejemplo EEPROM).
Los tags pasivos suelen tener distancias de uso práctico comprendidas entre los 10 cm (ISO 14443) y llegando hasta unos pocos metros (EPC e ISO 18000-6), según la frecuencia de funcionamiento y el diseño y tamaño de la antena. Por su sencillez conceptual, son obtenibles por medio de un proceso de impresión de las antenas. Como no precisan de alimentación energética, el dispositivo puede resultar muy pequeño: pueden incluirse en una pegatina o insertarse bajo la piel (tags de baja frecuencia).
En 2006, Hitachi desarrolló un dispositivo pasivo denominado µ-Chip con un tamaño de 0,15×0,15 mm sin antena, más delgado que una hoja de papel (7,5 µm).4 5 Se utiliza SOI (Silicon-on-Insulator) para lograr esta integración. Este chip puede transmitir un identificador único de 128 bits fijado a él en su fabricación, que no puede modificarse y confiere autenticidad al mismo. Tiene un rango máximo de lectura de 30 cm. En febrero de 2007 Hitachi presentó un dispositivo aún menor de 0,05×0,05 mm y lo suficientemente delgado como para poder estar integrado en una hoja de papel.6 Estos chips tienen capacidad de almacenamiento y pueden funcionar en distancias de hasta unos pocos cientos de metros. Su principal inconveniente es que su antena debe ser como mínimo 80 veces más grande que el chip.
Alien Technology (Fluidic Self Assembly), SmartCode (Flexible Area Synchronized Transfer) y Symbol Technologies (PICA) declaran disponer de procesos en diversas etapas de desarrollo que pueden reducir aún más los costes por medio de procesos de fabricación paralela.[cita requerida] Estos medios de producción podrían reducir mucho más los costes y dirigir los modelos de economía de escala de un sector importante de la manufactura del silicio. Esto podría llevar a una expansión mayor de la tecnología de tags pasivos.
Existen tags fabricados con semiconductores basados en polímeros desarrollados por compañías de todo el mundo. En 2005 PolyIC y Philips presentaron tags sencillos en el rango de 13,56 MHz que utilizaban esta tecnología. Si se introducen en el mercado con éxito, estos tags serían producibles en imprenta como una revista, con costes de producción mucho menores que los tags de silicio, sirviendo como alternativa totalmente impresa, como los actuales códigos de barras. Sin embargo, para ello es necesario que superen aspectos técnicos y económicos, teniendo en cuenta que el silicio es una tecnología que lleva décadas disfrutando de inversiones de desarrollo multimillonarias que han resultado en un coste menor que el de la impresión convencional.
Debido a las preocupaciones por la energía y el coste, la respuesta de una etiqueta pasiva RFID es necesariamente breve, normalmente apenas un número de identificación (GUID). La falta de una fuente de alimentación propia hace que el dispositivo pueda ser bastante pequeño: existen productos disponibles de forma comercial que pueden ser insertados bajo la piel. En la práctica, las etiquetas pasivas tienen distancias de lectura que varían entre unos 10 milímetros hasta cerca de 6 metros, dependiendo del tamaño de la antena de la etiqueta y de la potencia y frecuencia en la que opera el lector. En 2007, el dispositivo disponible comercialmente más pequeño de este tipo medía 0,05 milímetros × 0,05 milímetros, y más fino que una hoja de papel; estos dispositivos son prácticamente invisibles.
funcionamiento
Tags activos
A diferencia de los tags pasivos, los activos poseen su propia fuente autónoma de energía, que utilizan para dar corriente a sus circuitos integrados y propagar su señal al lector. Estos tags son mucho más fiables (tienen menos errores) que los pasivos debido a su capacidad de establecer sesiones con el reader. Gracias a su fuente de energía son capaces de transmitir señales más potentes que las de los tags pasivos, lo que les lleva a ser más eficientes en entornos dificultosos para la radiofrecuencia como el agua (incluyendo humanos y ganado, formados en su mayoría por agua), metal (contenedores, vehículos). También son efectivos a distancias mayores pudiendo generar respuestas claras a partir de recepciones débiles (lo contrario que los tags pasivos). Por el contrario, suelen ser mayores y más caros, y su vida útil es en general mucho más corta.
Muchos tags activos tienen rangos efectivos de cientos de metros y una vida útil de sus baterías de hasta 10 años. Algunos de ellos integran sensores de registro de temperatura y otras variables que pueden usarse para monitorizar entornos de alimentación o productos farmacéuticos. Otros sensores asociados con ARFID incluyen humedad, vibración, luz, radiación, temperatura y componentes atmosféricos como el etileno. Los tags activos, además de mucho más rango (500 m), tienen capacidades de almacenamiento mayores y la habilidad de guardar información adicional enviada por el transceptor.
Actualmente, las etiquetas activas más pequeñas tienen un tamaño aproximado de una moneda. Muchas etiquetas activas tienen rangos prácticos de diez metros, y una duración de batería de hasta varios años.
CARACTERISTICAS
- Fuente de alimentación propia mediante baterías de larga duración.
- Distancias de lectura escritura mayor de 10m a 100m generalmente.
Diversas tecnologías y frecuencias.- Memoria generalmente entre 4 y 32 kbytes.
- Batería de larga duración (generalmente baterías de litio / dióxido de manganeso)
- Fabricantes: TagMaster, Identec Solutions, Siemens, WhereNet, Bluesoft, Syris RFID.
- Precio del tag: 30 a 90 €.
La principal ventaja de los tags RFID activos respecto a los pasivos es el elevado rango de lectura, del orden de decenas de metros. Como desventajas, cabe destacar el precio, que es muy superior que los tags pasivos y la dependencia de alimentación por baterías. El tiempo de vida de las baterías depende de cada modelo de tag y también de la actividad de este, normalmente es del orden de años. Para facilitar la gestión de las baterías, es habitual que los tags RFID activos envían al lector información del nivel de batería, lo que permite sustituir con antelación aquellas que están a punto de agotarse.
En el mercado se tiene una variada gama como por ejemplo el Tag RFID Activo SYTAG245-2C que tiene las características antes mencionadas:
- Frecuencia de comunicación: 2,45 GHz
- Rango de frecuencia: entre 2,40 y 2,48 GHz (opción de 125 kHz ó 13,56 MHz)
- Canal: 255
- Dirección: 65536 direcciones
- Wake on radio: ON / OFF
- RSSI: 0-255
- ID: 64 bits.
- Programación: configurable a partir de comandos.
- Led: acción o estatus.
- Conmutación: configurada como tag activo o tag ON/OFF.
- Memoria: de 4 a 32 kbytes (opcional).
- Batería: 3 VDC CR2032 × 1 ó × 2
- Duración de la batería: de 1 a 10 años
- Consumo en reposo: 3 uA @ 3 VDC.
- Consumo en funcionamiento: 24 mA @ 3 VDC
- Temperatura de funcionamiento: entre -10 y 55 °C
- Temperatura de almacenaje: entre -20 y 65 °C
- Humedad relativa de funcionamiento y almacenaje: de 5% a 95%
También pueden encontrarse los tags RFID activos SYTAG245-2K, SYTAG245-2S, SYTAG245-TM.
Tipos de antena
El tipo de antena utilizado en un tag depende de la aplicación para la que está diseñado y de la frecuencia de operación. Los tags de baja frecuencia (LF, del inglés low frequency) normalmente se sirven de la inducción electromagnética. Como el voltaje inducido es proporcional a la frecuencia, se puede producir el necesario para alimentar un circuito integrado utilizando un número suficiente de espiras. Existen tags LF compactos (como los encapsulados en vidrio utilizados para identificación humana y animal) que utilizan una antena en varios niveles (tres de 100-150 espiras cada uno) alrededor de un núcleo de ferrita.
En alta frecuencia (HF, 13,56 MHz) se utiliza una espiral plana con 5-7 vueltas y un factor de forma parecido al de una tarjeta de crédito para lograr distancias de decenas de centímetros. Estas antenas son más baratas que las LF ya que pueden producirse por medio de litografía en lugar de espiración, aunque son necesarias dos superficies de metal y una aislante para realizar la conexión cruzada del nivel exterior al interior de la espiral, donde se encuentran el condensador de resonancia y el circuito integrado.
Los tags pasivos en frecuencias ultraalta (UHF) y de microondas suelen acoplarse por radio a la antena del lector y utilizar antenas clásicas de dipolo. Sólo es necesaria una capa de metal, lo que reduce el coste. Las antenas de dipolo, no obstante, no se ajustan muy bien a las características de los circuitos integrados típicos (con alta impedancia de entrada, ligeramente capacitiva). Se pueden utilizar dipolos plegados o bucles cortos como estructuras inductivas complementarias para mejorar la alimentación. Los dipolos de media onda (16 cm a 900 MHz) son demasiado grandes para la mayoría de aplicaciones (por ejemplo los tags para uso en etiquetas no pueden medir más de 10 cm), por lo que hay que doblar las antenas para satisfacer las necesidades de tamaño. También pueden usarse estructuras de banda ancha. La ganancia de las antenas compactas suele ser menor que la de un dipolo (menos de 2 dBi) y pueden considerarse isótropas en el plano perpendicular a su eje.
Los dipolos experimentan acoplamiento con la radiación que se polariza en sus ejes, por lo que la visibilidad de un tag con una antena de dipolo simple depende de su orientación. Los tags con dos antenas ortogonales (tags de doble dipolo) dependen mucho menos de ella y de la polarización de la antena del lector, pero suelen ser más grandes y caras que sus contrapartidas simples.
Pueden usarse antenas de parche (patch) para dar servicio en las cercanías de superficies metálicas, aunque es necesario un grosor de 3 a 6 mm para lograr un buen ancho de banda, además de que es necesario tener una conexión a tierra que incrementa el coste comparado con estructuras de una capa más sencillas.
Las antenas HF y UHF suelen ser de cobre o aluminio. Se han probado tintas conductoras en algunas antenas encontrando problemas con la adhesión al circuito integrado y la estabilidad del entorno.
Entornos de tags
Localizacion De los Tags
El concepto de tag RFID va asociado al de su ubicuidad. Esto supone que los lectores pueden requerir la selección de tags a explorar de entre muchos candidatos posibles. También podrían desear realizar una exploración de los tags de su entorno para realizar inventarios o, si los tags se asocian a sensores y pueden mantener sus valores, identificar condiciones del entorno. Si un reader intenta trabajar con un conjunto de tags debe conocer los dispositivos que se encuentran en su área de acción para después recorrerlos uno a uno, o bien hacer uso de protocolos de evitación de colisiones.
En general, puede emitirse una señal espuria si se detecta actividad de tags para bloquear las transmisiones débiles producidas por éstos. En caso de que los tags sean prescindibles o no sean necesarios de nuevo, pueden inutilizarse induciendo en ellos corrientes elevadas que inutilicen sus circuitos.Para leer los datos de los tags, los readers utilizan un algoritmo de singulación basado en el recorrido de árboles, resolviendo las colisiones que puedan darse y procesando secuencialmente las respuestas. Existen tags bloqueantes (blocker tags) que pueden usarse para evitar que haya lectores que accedan a las tags de un área sin necesidad de recurrir a comandos de suicidio para inhabilitar los tags. Estos tags se hacen pasar por tags normales pero poseen ciertas características específicas; en concreto, pueden tomar cualquier código de identificación como propio, y pueden responder a toda pregunta que escuchen, asegurando el entorno al anular la utilidad de estas preguntas.
Aparte de esto, un tag puede ser promiscuo, si responde a todas las peticiones sin excepción, o seguro, si requiere autentificación (esto conlleva los aspectos típicos de gestión de claves criptográficas y de acceso). Un tag puede estar preparado para activarse o desactivarse como respuesta a comandos del lector.
Los lectores encargados de un grupo de tags en un área pueden operar en modo autónomo en contraposición al modo interactivo. Si trabajan de esta forma, realizan una identificación periódica de todos los tags en su entorno y mantienen una lista de presencia con tiempos de persistencia (timeouts) e información de control. Si una entrada expira, se elimina de la tabla.
Con frecuencia una aplicación distribuida requiere el uso de ambos tipos extremos de tags. Los tags pasivos no pueden realizar labores de monitorización continua sino que realizan tareas bajo demanda cuando los readers se las solicitan. Son útiles para realizar actividades regulares y bien definidas con necesidades de almacenamiento y seguridad acotadas. Si hay accesos frecuentes, continuos o impredecibles, o bien existen requerimientos de tiempo real o procesamiento de datos (como búsqueda en tablas internas) suele ser conveniente utilizar tags activos.
REGULACION DE FRECUENCIAS
No hay ninguna corporación pública global que gobierne las frecuencias usadas para RFID. En principio, cada país puede fijar sus propias reglas.
Las principales corporaciones que gobiernan la asignación de las frecuencias para RFID son:
- EE.UU.: FCC (Federal Communications Commission)
- Canadá: DOC (Departamento de la Comunicación)
- Europa: ERO, CEPT, ETSI y administraciones nacionales. Obsérvese que las administraciones nacionales tienen que ratificar el uso de una frecuencia específica antes de que pueda ser utilizada en ese país
- Japón: MPHPT (Ministry of Public Management, Home Affairs, Post and Telecommunication)
- China: Ministerio de la Industria de Información
- Australia: Autoridad Australiana de la Comunicación (Australian Communication Authority)
- Nueva Zelanda: Ministerio de desarrollo económico de Nueva Zelanda (New Zealand Ministry of Economic Development.
- Argentina: CNC (Comisión Nacional de Comunicaciones).
- Chile: Ministerio de Transportes y Telecomunicaciones.
Las etiquetas RFID de baja frecuencia (LF: 125 - 134 kHz y 140 - 148.5 kHz) y de alta frecuencia (HF: 13.56 MHz) se pueden utilizar de forma global sin necesidad de licencia. La frecuencia ultraalta (UHF: 868 - 928 MHz) no puede ser utilizada de forma global, ya que no hay un único estándar global. En Norteamérica, la frecuencia ultraelevada se puede utilizar sin licencia para frecuencias entre 908 - 928 MHz, pero hay restricciones en la energía de transmisión. En Europa la frecuencia ultraelevada está bajo consideración para 865.6 - 867.6 MHz. Su uso es sin licencia sólo para el rango de 869.40 - 869.65 MHz, pero existen restricciones en la energía de transmisión. El estándar UHF norteamericano (908-928 MHz) no es aceptado en Francia e Italia ya que interfiere con sus bandas militares. En China y Japón no hay regulación para el uso de la frecuencia ultraelevada. Cada aplicación de frecuencia ultraelevada en estos países necesita de una licencia, que debe ser solicitada a las autoridades locales, y puede ser revocada. En Australia y Nueva Zelanda, el rango es de 918 - 926 MHz para uso sin licencia, pero hay restricciones en la energía de transmisión.
Existen regulaciones adicionales relacionadas con la salud y condiciones ambientales. Por ejemplo, en Europa, la regulación Waste Electrical and Electronic Equipment ("Equipos eléctricos y electrónicos inútiles"), no permite que se desechen las etiquetas RFID. Esto significa que las etiquetas RFID que estén en cajas de cartón deben ser quitadas antes de deshacerse de ellas. También hay regulaciones adicionales relativas a la salud; véase campo electromagnético.
BENEFICIOS Y VENTAJAS
- Combinación de diferentes tecnologías la RFID e Internet.
- Audio libro para los jóvenes: cuando Nabaztag reconoce la chip RFID, se inicializa la lectura del libro en viva voz, y permite enriquecerlo de diferentes maneras con aplicaciones interactivas y en línea, al mismo tiempo que conserva su forma sobre papel.
- Proveedor de identificación y localización de artículos en la cadena de suministro más inmediato, automático y preciso de cualquier compañía, en cualquier sector y en cualquier parte del mundo.
- Lecturas más rápidas y más precisas (eliminando la necesidad de tener una línea de visión directa).
- Niveles más bajos en el inventario.
- Mejora el flujo de caja y la reducción potencial de los gastos generales.
- Reducción de roturas de stock.
- Capacidad de informar al personal o a los encargados de cuándo se deben reponer las estanterías o cuándo un artículo se ha colocado en el sitio equivocado.
- Disminución de la pérdida desconocida.
- Ayuda a conocer exactamente qué elementos han sido sustraídos y, si es necesario, dónde localizarlos.
- Integrándolo con múltiples tecnologías -vídeo, sistemas de localización, etc.- con lectores de RFID en estanterías ayudan a prevenir el robo en tienda.
- Mejor utilización de los activos.
- Seguimiento de sus activos reutilizables (empaquetamientos, embalajes, carretillas) de una forma más precisa.
- Luchar contra la falsificación (esto es primordial para la administración y las industrias farmacéuticas).
- Retirada del mercado de productos concretos.
- Reducción de costos y en el daño a la marca (averías o perdida de ventas).
Usos Actuales
dependiendo de las frecuencias utilizadas en los sistemas RFID, el coste, el alcance y las aplicaciones son diferentes. Los sistemas que emplean frecuencias bajas tienen igualmente costes bajos, pero también baja distancia de uso. Los que emplean frecuencias más altas proporcionan distancias mayores de lectura y velocidades de lectura más rápidas. Así, las de baja frecuencia se utilizan comúnmente para la identificación de animales, seguimiento de barricas de cerveza, o como llave de automóviles con sistema antirrobo. En ocasiones se insertan en pequeños chips en mascotas, para que puedan ser devueltas a su dueño en caso de pérdida. En los Estados Unidos se utilizan dos frecuencias para RFID: 125 kHz (el estándar original) y 134,5 kHz (el estándar internacional). Las etiquetas RFID de alta frecuencia se utilizan en bibliotecas y seguimiento de libros, seguimiento de palés, control de acceso en edificios, seguimiento de equipaje en aerolíneas, seguimiento de artículos de ropa y ahora último en pacientes de centros hospitalarios para hacer un seguimiento de su historia clínica. Un uso extendido de las etiquetas de alta frecuencia como identificación de acreditaciones, substituyendo a las anteriores tarjetas de banda magnética. Sólo es necesario acercar estas insignias a un lector para autenticar al portador.
Las etiquetas RFID de UHF se utilizan comúnmente de forma comercial en seguimiento de palé y envases, y seguimiento de camiones y remolques en envíos o en sistemas de distribución de uniformidad en Hospitales HF(Asturias - España) o incluso en la ropa plana, siempre y cuando el tag sea encapsulado en resina de epoxi, para mayor resistencia al proceso de calandrado y prenda de extracción de agua. Sector textil-sanitario entre otros vamos a hablar de unos cuantos
Implantes humanos
Mano izquierda de Amal Graafstra con la situación planeada del chip RFID
Justo después de que la operación de inserción de la etiqueta fuera completada
Los chips RFID implantables, diseñados originalmente para el etiquetado de animales se está utilizando y se está contemplando también para los seres humanos. Applied Digital Solutions propone su chip "unique under-the-skin format" (formato bajo-la-piel único) como solución a la usurpación de la identidad, al acceso seguro a un edificio, al acceso a un ordenador, al almacenamiento de expedientes médicos, a iniciativas de anti-secuestro y a una variedad de aplicaciones. Combinado con los sensores para supervisar diversas funciones del cuerpo, el dispositivo Digital Angel podría proporcionar supervisión de los pacientes
Logística
Actualmente, la aplicación más importante de RFID es la logística. El uso de esta tecnología permitiría tener localizado cualquier producto dentro de la cadena de suministro. En lo relacionado a la trazabilidad, las etiquetas podrían tener gran aplicación ya que las mismas pueden grabarse, con lo que se podría conocer el tiempo que el producto estuvo almacenado, en que sitios, etc. De esta manera se pueden logra importantes optimizaciones en el manejo de los productos en las cadenas de abastecimiento teniendo como base el mismo producto, e independizándose prácticamente del sistema de información.
tráfico Y Pocisionamiento
Otra aplicación propuesta es el uso de RFID para señales de tráfico inteligentes en la carretera (Road Beacon System o RBS) [4]. Se basa en el uso de transpondedores RFID enterrados bajo el pavimento (radiobalizas) que son leídos por una unidad que lleva el vehículo (OBU, de onboard unit) que filtra las diversas señales de tráfico y las traduce a mensajes de voz o da una proyección virtual usando un HUD (Heads-Up Display). Su principal ventaja comparadas con los sistemas basados en satélite es que las radiobalizas no necesitan de mapeado digital ya que proporcionan el símbolo de la señal de tráfico y la información de su posición por sí mismas. Las radiobalizas RFID también son útiles para complementar sistemas de posicionamiento de satélite en lugares como los túneles o interiores, o en el guiado de personas ciegas.
Christian Argenis Umaña Zambrano
C.i:17678077
No hay comentarios:
Publicar un comentario